
Exchange effects in a two-dimensional Fermi liquid

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 5257

(http://iopscience.iop.org/0305-4470/29/17/005)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 5257–5272. Printed in the UK

Exchange effects in a two-dimensional Fermi liquid

M M Calbi and E S Herńandez
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Abstract. We investigate the possibility of simulating exchange effects in a two-dimensional
fermion liquid within a model of distinguishable particles. For this purpose, we intend to
reproduce both bulk and microscopic properties of the system ofN indistinguishable particles, as
predicted by the Landau theory of Fermi liquids adapted to describe a single atomic monolayer,
by means of a Hartree calculation of the ground state, the single particle spectrum and the
effective interaction of a system ofN distinguishable particles interacting via a coordinate-
dependent plus momentum-dependent interaction. It is shown that for given original two-body
interactions of the smoothed square or Lennard-Jones shape, it is possible to construct an image
system possessing the same microscopic properties as the original quantum liquid within a
substantial range of single particle momenta.

1. Introduction

Since the advent of Landau’s theory of Fermi liquids [1], liquid3He became the best
established paradigm of such systems [2, 3]. The fundamental concepts of the theory have
also been applied to nuclear and neutron star matter [4]. More recently, the possibility of
building up two-dimensional Fermi liquids in the laboratory, arose from the recognition of
the existence of Andreev states [5] in mixtures of liquid3He and4He, together with the
observed formation of atomic monolayers that may exhibit properties like aT 2 dependence
of the surface tension [6], surface second sound [7], superfluidity [8] and Heisenberg
ferromagnetism [9]. The need to review the standard theories of Fermi liquids in order
to adapt them to lower dimensionalities is a natural outcome of these experimental facts.

On the other hand, numerical experiments driven by computer simulations are now a
common tool in condensed matter physics as alternatives to both laboratory experiments
and theoretical approaches. However, while the procedure to set up numerical dynamics of
classical particles is well understood, simulations of quantum systems such as the quantum
molecular dynamics (QMD) approach [10] are appreciably more complicated due to the
restrictions imposed by the indistinguishability of the particles. In addition to the difficulties
associated with the numerical implementation of QMD and related methods, their theoretical
foundation has not been fully established. A way to circumvent the momentum space
restrictions posed by the Pauli principle on fermion systems, and perform either classical
molecular dynamics or classical Monte Carlo calculations, has been succesfully applied to
aspects of nuclear dynamics [11–16]. The idea already advanced by Wilets and collaborators
[17, 18] is to mimic the antisymmetric character of the many-particle wavefunction by
means of a repulsive two-particle potential that depends upon the relative momentum of
the interacting pair. In a recent work [19], the Hamiltonian dynamics of one and two
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particles subjected to such momentum-dependent interactions, in addition to a soft barrier
repulsion that approaches a hard disk interaction, has been presented with the aim of getting
some insight on the possible modifications of hard disk molecular dynamics [20–22] when
momentum space restrictions are enforced into the picture.

The construction of image systems of quantum liquids, made up of distinguishable
particles that interact through two-body potentials acting on the relative phase space of the
collision partners is an interesting field, in view of the possibility of performing numerical
experiments based on classical molecular dynamics. However, it should be kept in mind
that for an interacting many-body system, the fundamental entity that enters the ground
state energy, the excitation spectrum and particle collisions is the effective interaction in
the medium. It then appears that consistent attempts to model a system of indistinguishable
particles by means of distinguishable ones should give a reliable description of elementary
excitations and scattering properties of the original liquid, in addition to thermodynamic
properties such as the equation of state, bulk incompressibility or sound velocity, and the
lowest multipole Landau parameters. The aim of the present work is to analyse within a
simple, however non-trivial approach, the conditions under which a two-dimensional Fermi
liquid can be mimicked by a system of distinguishable particles.

To this end, in section 2 we briefly review the notation and major ingredients entering
the Landau theory of Fermi liquids adapted to the two-dimensional case. In the remainder
of the paper, we compare two situations, namely (a) anN -body system interacting through
a pairwise interactionVc(r) whose total energy is provided by the Hartree–Fock (HF)
description and (b) anN -body system interacting with a phase space potentialVc(r)+Vm(q),
where q is the relative momentum of the given pair, with total energy computed in the
Hartree (H) frame where exchange effects in the total wavefunction are not considered.
Attention is paid to the quasiparticle excitation spectrum and to the quasiparticle effective
interaction as given by the Landau theory of Fermi liquids; the potential of (b) is then
chosen to provide the best match with the quantities computed in (a). In sections 3 and 4
we discuss respectively the application to a Woods–Saxon and to a Lennard-Jones potential,
the latter endowed with a finite repulsive core to make mean field calculations feasible. The
conclusions and perspectives are summarized in section 5.

2. The two-dimensional Fermi liquid

The system we wish to investigate consists ofN interacting fermions confined to a two-
dimensional box of areaA. Since the details of Landau’s theory of Fermi liquids usually
refer to three-dimensional systems (see, for example, [2, 3]), here we briefly discuss the
necessary modifications for monolayers. Let us first recall a few essential issues of the
theory. We shall always refer to a liquid in thermodynamical equilibrium at temperatureT ,
characterized by a single fermion distributionn0

k = {1 + exp[(εk − µ)/T ]}. From the total
energyE0({n0

k}) one may obtain the single particle (sp) spectrum

εk = δE

δnk
(2.1)

and the effective quasiparticle interaction

fkk′ = δ2E

δnkδnk′
(2.2)

where the symbolδ denotes functional differentiation andE = E0 + δE is the energy when
occupation number fluctuations{δnk} take place in the liquid.
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The effective quasiparticle interaction is usually represented by its dimensionless
multipolar strengths on the Fermi surface or Landau parametersFα

l = νF f α
l , whereνF

is the density of sp states on the Fermi surface andf α
l is the amplitude of the expansion of

f α
kk′ in terms of a set of orthogonal functions of the angle betweenk andk′, for each spin

channelα = s (symmetric) orα = a (antisymmetric). For the two-dimensional situation,
this expansion takes the form

f α
kk′ =

∑
l

fl(k, k′)eilϕ (2.3)

where cosϕ = k̂ · k̂′. Accordingly, the Landau parameters are taken as

Fα
l = νF f α

l (kF , kF ) (2.4)

wherekF = √
2πρ is the radius of the Fermi circle and with the level density per unit area

νF = m∗
F

πh̄2 . (2.5)

In the above expression,m∗
F is the effective mass for quasiparticles lying on the two-

dimensional Fermi level and is related to the symmetric dipolar Landau parameter by

m∗

m
= 1 + F s

1 . (2.6)

By contrast, the dipole correction is reduced by a factor of1
3 in the three-dimensional system

[2, 3].
Hereafter we will restrict ourselves to the zero temperature case. The HF formulation

is well known and for a two-dimensional system of areaA, the total energy can be written
as

EHF
0 = 2

∑
k

h̄2k2

2m
+ 2

A

∑
kk′

Ṽ (0) − 1

A

∑
kk′

Ṽ (k − k′) (2.7)

whereρ = N/A is the total density and̃V (q) is the Fourier transform of the interaction
potentialV (r); q ≡ k − k′ is the transferred momentum andk, k′ the relative momenta
of the particles respectively after and before the interaction event. The sp spectrum and
effective interaction easily follow as

εk = h̄2k2

2m
+ Ṽ (0)ρ − 1

A

∑
k′

Ṽ (k − k′) (2.8)

fk,k′ = 1

A
[Ṽ (0) − δσσ ′ Ṽ (k − k′)] (2.9)

where all summations upon momenta are restricted to the interior of the Fermi circle.
A straightforward calculation leads us to the following expression for the total HF energy

per particle:

E0

N
(ρ) =

[
πh̄2

2m
+ Ṽ (0)

2

]
ρ −

∫ ∞

0
dr V (r)

J 2
1 (kF r)

r
(2.10)

from which we may obtain the pressureP(ρ) = ρ2∂[E0/N ]/∂ρ as

P(ρ) =
[

πh̄2

2m
+ Ṽ (0)

2

]
ρ2 − ρ

E0

N
−

√
2πρ3/2

∫ ∞

0
dr V (r)J0(kF r)J1(kF r) (2.11)
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and the incompressibility modulusK−1 = ρ∂P/∂ρ

K−1(ρ) =
[

πh̄2

2m
+ Ṽ (0)

2

]
ρ2 − πρ2

∫ ∞

0
dr rV (r)[J 2

0 (kF r) − J 2
1 (kF r)]. (2.12)

Furthermore, the single quasiparticle energy is

ε(k) = h̄2k2

2m
+ Ṽ (0)ρ − kF

∫ ∞

0
dr J0(kr)J1(kF r)V (r) (2.13)

the effective mass as a function of sp momentum takes the form

m∗(k)

m
= 1 + mkF

h̄2k

∫ ∞

0
dr rV (r)J1(kr)J1(kF r) (2.14)

and the multipolar amplitudes of the effective interaction in each spin channel read

f s
l (k, k′) = Ṽ (0)

A
δl0 − π

A

∫ ∞

0
dr rV (r)Jl(kr)Jl(k

′r) (2.15)

f a
l (k, k′) = f s

l (k, k′) − Ṽ (0)

A
δl0. (2.16)

With the above expressions for the momentum-dependent Landau fieldsf α
l (k, k′), a

simple calculation permits us to verify both equation (2.6) and the relationship

K−1 = ρ2 1 + F s
0

νF

(2.17)

that also holds in the three-dimensional case.
Let us now consider an image system consisting ofN distinguishable particles in a

ground state described by a Hartree product of plane waves. The total energy reads, in
general,

EH
0 = 2

∑
k

h̄2k2

2m
+ 1

2

∑
kk′

∑
σσ ′

〈kσk′σ ′|VH|kσk′σ ′〉 (2.18)

with summations restricted to momenta belowkF and with the phase space potential

VH(r, q) = Vc(r) + Vm(q̂)
δ(r − r0)

2πr
δσσ ′ . (2.19)

While the termVc(r) is the usual coordinate-dependent interaction, the new contribution
Vm(q̂) depends upon the relative momentum of the particles that come together at the
interaction distancer0. More generally, the momentum-dependent force should be allowed
to act whenever the two particles are sufficiently close in coordinate space to experience
a momentum change due to the non-vanishing interaction force; in this sense, the Dirac’s
delta in equation (2.19) is a limiting representation of a bell-like kernel spreading through
the active interaction region. This is the simplest form of taking into account the local
character of the momentum change, making room for analytical expressions that permit one
to reproduce the desired effects. For the full phase space interaction, one gets, instead of
formulae (7) to (9),

EH
0 = 2

∑
k

h̄2k2

2m
+ 2

A

∑
kk′

ṼH(0) + 1

A

∑
kk′

Ṽm(k − k′) (2.20)

εk = h̄2k2

2m
+ ṼH(0)ρ + 1

A

∑
k′

Ṽm(k − k′) (2.21)

fk,k′ = 1

A
[ṼH(0) + δσσ ′ Ṽm(k − k′)]. (2.22)
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3. The smoothed square potential

Let us first consider a simple barrier or well of the form

V (r) = Vr

1 + ebr (r2−r2
0)

(3.1)

whereVr and r0 respectively measure the strength and range of the interaction,r being
the relative distance between particles andbr the size of the region where the interaction
forces are non-vanishing. The direct and exchange matrix elements entering the effective
qp interaction can be shown to be

〈kk′|V |kk′〉 = πVr

A

[
r2

0 + 1

br

ln(1 + e−br r
2
0 )

]
(3.2)

〈kk′|V |k′k〉 = 2π

A

∫ ∞

0
dr rV (r)J0(|k − k′|r) (3.3)

where we have used the integral representation of the zeroth Bessel function

J0(x) = 1

2π

∫ 2π

0
dϕ eix cosϕ. (3.4)

Let us now specialize the interaction terms in equation (2.19) as follows. LetVc take the
smoothed square form with renormalized strength and widthV H

r , bH
r and let the momentum

dependent potential be a repulsion given by

Vm(q) = Vq

1 + ebq (q2−q2
0)

. (3.5)

After some algebra, we obtain the multipolar amplitudes of the new effective interaction

f s
l (k, k′) = ṼH(0)

A
δl0 + 1

4π

∫ 2π

0

cosϕ dϕ

1 + ebq (k2+k′2−2kk′ cosϕ−q2
0)

(3.6)

Figure 1. Total energy of the liquid in the mean field approximation as a function of the density
for the parameter values of table 1. The full curve corresponds to the energy computed in the
Hartree–Fock frame, while asterisks indicate results from Hartree calculations.
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Figure 2. Quasiparticle energy as a function of single particle momentum in units of the Fermi
momentum. Details are the same as in figure 1.

Figure 3. Dimensionless effective interaction as a function of transferred momentum in units
of the Fermi momentum. Details are the same as in figure 1.

f a
l (k, k′) = f s

l (k, k′) − ṼH(0)

A
δl0. (3.7)

For the selected phase space potential, the summations in equations (2.20) and (2.21)
can neither be carried out analytically nor cast into an integral form as in equations (2.10)
to (2.15). Consequently, we have computed them explicitly as follows. For a fixed density,
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Figure 4. Dimensionless multipolar amplitudes of the quasiparticle effective interaction as
functions of momenta in units of the Fermi momentum obtained in the Hartree–Fock frame with
the parameters of table 1; (a) l = 0; (b) l = 1; (c) l = 2.

we fit the effective interactionf s(q) computed in the HF frame to the formula

f s
H = 1

A

[
Ṽr (0) + 1

2
Vm(q)

]
. (3.8)
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Figure 4. (Continued)

This fit leaves us with a set of parameters for the Hartree potential. The quasiparticle and
the total energy are then obtained as

εk = h̄2k2

2m
+ 2

∑
kk′

f s
kk′ (3.9)

EH
0 = 2

∑
k

εk − 2
∑
kk′

f s
kk′ . (3.10)

The summations are carried over all sp states lying at the nodes of a lattice with side
2π/

√
A in momentum space; the number of particles is chosen higher than the numerical

boundNmax for which the ratioEH
0 /N becomes independent ofN . This is an important

computational detail, in view of the fact that theHF results are exact in the thermodynamic
limit, i.e. integrations over momentum space have been fully performed.

The major results of this section are presented in figures 1 to 7. They correspond to
the set of parameters displayed in table 1. The value ofbr has been chosen to yield a
sharp well or barrier, intending to mimic hard disks in the latter case. The value ofVr

has been selected to give a stable system at low densities, since a detailed study of the
HF energy for the two-body interaction (2.10) shows that no saturation point is reached,
regardless of the sign and strength ofVr . Indeed, while for repulsive interactions the system
is never bound, for attractive ones it collapses at high densities. This behaviour is due to the
fact that the exchange contribution to the interaction matrix elements becomes essentially
constant for densities above unity and its size is not sufficient to counterbalance the large
kinetic-plus-direct interaction term proportional to the density.

Figure 1 displays the total energy per particleE/N as a function of the density, while
in figure 2 we plot the quasiparticle energyεk in terms of the sp momentum, and in figure 3
the dimensionless effective interactionF(q) = νF f s(q) in the spin symmetric channel
as a function of transferred momentum. The full curves denote HF results and asterisks
correspond to the H case. In figures 4(a)–(c) we show the HF multipolar amplitudesFl(k, k′)
of the dimensionless effective interactionF(k, k′) for l = 0, 1, 2, while those in figure 5
have been computed from the H energy. It is seen that the overall agreement is excellent.
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Figure 5. Same as figure 4 for the Hartree results.

In particular, it is surprising that although the fit was performed for a fixed density, the total
energy coincides over a large density range. Furthermore, we find that in spite of the fact
that the agreement between the respective multipoles of the effective interaction, as well
as that of the Landau parameters, is remarkable, the H calculations give slightly smoother
surfaces than the HF ones. This fact can be easily attributed to the loss, in the H frame, of
the quantal oscillations contained in the exchange matrix elements.
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Figure 5. (Continued)

Figure 6. Same as figure 2 for the bounded Lennard-Jones potential.

4. The bounded Lennard-Jones potential

We now choose for the particle interaction a Lennard-Jones shape with a finite barrier at
short distances, of the form

V (r) =


4ε

[(σ

r

)12
−

(σ

r

)6
]

r > σ

b

[
1 −

( r

σ

)8
]

r < σ

(4.1)
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Figure 7. Same as figure 3 for the bounded Lennard-Jones potential.

Table 1. Total energy, pressure, incompressibility and the first three symmetric Landau
parameters obtained in the fit of the HF results with the smoothed squared interaction to the
H potential. The parameters of the corresponding potentials are shown in the two columns at
the right. The fit was performed for a densityρ = 0.5 and the H calculations correspond to a
particle numberN = 882.

Hartree–Fock Hartree Hartree–Fock Hartree

E 0.344 0.339 br 10 10
P 0.129 0.128 Vr −0.85 −0.92
K−1 0.192 0.194 bq 0.18
F s

0 −0.728 −0.725 Vq 5
F s

1 0.112 0.103 q0 1.4
F s

2 0.018 0.010

Table 2. Same as in table 1 for the bounded Lennard-Jones interaction. The fit was performed
at the saturation densityρs = 1.2.

Hartree–Fock Hartree Hartree–Fock Hartree

E −0.310 −0.315 ε 2 2.518
K−1 1.47 1.45 b 2 1.9
F s

0 −0.730 −0.736 bq 0.95
F s

1 −0.119 −0.116 Vq 12.8
F s

2 0.094 0.094 q0 0.39
α −4.5
β 2.78
γ 1.9
δ 4.15

where bothε andb are regarded as parameters. In this case, only the direct matrix element
can be computed exactly, giving

〈kk′|V |kk′〉 = 1

A

2

5
πσ 2(2b − 3ε) (4.2)
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Figure 8. Same as figure 4 for the bounded Lennard-Jones potential.

It can be verified that there exists a range of values (ε, b) where the system saturates
at a density near unity. Hereafter, we will discuss the results obtained at saturation density
for the choiceε = b = 2. The first observation is the oscillatory character of theHF

effective interaction. Since at zero temperature transferred momenta larger than 2kF are not
relevant to investigating scattering properties of the system, we concentrate on values ofq

below 2kF . We are able to reproduce the shape of the effective interaction adopting, for the
Hartree formalism, the momentum-dependent potential

Vm(q) = P(q)
Vq

1 + ebq (q2−q2
0)

+ [1 − P(q)]

[
αJ0

(
β

q

kF

− γ

)
+ δ

]
. (4.3)
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Figure 8. (Continued)

HereP(q) is a smooth step function

P(q) = 1

1 + e(q2−q2
c )

(4.4)

with qc = 0.9kF . The parametersα, β, γ andδ are given in table 2.
The calculation procedure is identical to that described in the previous section and the

results for the quasiparticle energy and for the effective interaction are shown in figures 8
and 9, respectively, while the multipolar fields are plotted in figures 10 and 11. In this
case, the fit was performed at the saturation densityρs = 1.2. As in the Woods–Saxon
case, we find excellent agreement for all microscopic quantities. However, in contrast to
the preceding situation, the total energies do not coincide for densities other than the one
selected for the fit. Furthermore, the pressure is not reproduced atρs , due to the fact that
the latter is not the saturation density (i.e.P = 0) for the H system. It should be kept in
mind that the smoothed square potential, with the chosen values ofVq andbq , gives rise to
a relatively weak repulsion in a broad momentum region. By contrast, the purely repulsive
contribution here discussed is one order of magnitude stronger than the smoothed squared
one and considerably more localized.

5. Summary and conclusions

In this work, we have presented the formalism corresponding to the Landau theory of
Fermi liquids applied to a two-dimensional system. We have employed the prescription of
the theory to extract both bulk and microscopic magnitudes of an interactingN fermion
system on a surface, starting from the total energy computed in the HF approximation.
We have shown that in model situations corresponding to the choice of a Woods–Saxon
or a Lennard-Jones pairwise interaction, it is possible to find a phase space potential that,
when acting among particles whose exchange correlations have been suppressed in the
total wavefunction, yields the same quasiparticle effective interaction as obtained from the
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Figure 9. Same as figure 5 for the bounded Lennard-Jones potential.

solution of the HF problem. We have observed as well that such potentials provide an
excellent agreement with the sp spectra, with the lowest multipolar fields that expand the
effective interaction and with the total energy. For the smoothed square potential, the
agreement comprises the total energy as a function of the density, as well as pressure and
incompressibility modulus.

A further approach would be to attempt, by means of phase space interactions, a fit of
the two-body scattering amplitudes obtained as solutions of the Bethe Salpeter equation in
the Landau limit [3]. Such a possibility would provide an image system of the quantum
liquid that is free from exchange correlations, however yielding similar kinetic behaviour
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Figure 9. (Continued)

as the original fluid. The corresponding phase space potential could then be a basis for a
molecular dynamics investigation of the rich hydrodynamics and kinetics of classical two-
dimensional systems, for which very efficent algorithms are presently available [20–22].
We believe that this perspective opens an interesting field of research, in view of the fact
that present simulations of fermion dynamics that resort to phase space potentials mostly
design the latter to account only for the equation of state of the quantum system.
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